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a b s t r a c t

The 1.5 �m emission from Er3+ ions continues to be of current interest for applications in optical communi-
cations and eye-safe solid-state lasers. Recently, significant attention has been focused on the development
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ccepted 1 September 2008
vailable online 8 November 2008
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of 1.5–1.6 �m Er3+ solid-state lasers with resonant pumping of the 4I13/2 ↔ 4I15/2 transition. The motiva-
tion for resonantly pumped Er3+ lasers lies in the reduced thermal load, which is critical for high power
laser application. In this work we present results of the infrared optical properties of polycrystalline
ceramic Er:YAG and Er:KPb2Cl5 including absorption and emission studies, lifetime measurements, and
calculations of 1.5 �m emission cross-sections using the reciprocity and Fuchtbauer–Ladenburg methods.
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. Introduction

The development of solid-state gain media for the ∼1.5–1.6 �m
egion continues to be of significant current interest for applica-
ions in optical communications and eye-safe laser applications
1–3]. Significant advances were recently reported in the devel-
pment of ∼1.6 �m Er3+ lasers (e.g. Er:YAG), which are resonantly
umped between Stark levels of the 4I15/2 ↔ 4I13/2 transition [4–10].
he interest in resonantly pumped Er3+ lasers has been stimulated
y the availability of new long-wavelength pump sources includ-

ng Er3+ fiber lasers and ∼1.5 �m diode-laser arrays. In contrast to
umping into the 4I9/2 excited state of Er3+ at ∼980 nm, resonant
umping of the 4I13/2 level provides the advantage of a smaller heat

oad due to a reduced quantum defect.
The development of high quality ceramic Y3Al5O12 (YAG) doped

ith trivalent rare earth ions has made an enormous impact
n the field of solid-state lasers and is envisioned to replace
ingle-crystal YAG laser rods used in current applications [11–13].
ransparent ceramics offer several important advantages over sin-
le crystals including ease of fabrication at reduced cost, higher rare

arth homogeneity and concentration, the possibility of multi-layer
tructures, and fabrication of larger sizes [11–13]. Many studies on
eramic YAG have been concentrated on the material fabrication,
haracterization, and laser performance of Nd:YAG and Yb:YAG

∗ Corresponding author.
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eramics for ∼1 �m laser applications. Only a few studies were
eported so far on the spectroscopic properties of Er:YAG ceramics
or solid-state laser applications [14–17]. In most cases, the inves-
igated Er:YAG ceramics had a 50 at.% Er3+ concentration, which is
oo high for 1.5 �m eye-safe laser applications [16,17]. The emis-
ion quantum efficiency of the 1.5 �m emission was determined
o be only ∼26.4% for highly doped Er:YAG ceramics, which was
ttributed to upconversion and cross-relaxation processes [16]. For
uasi-three level laser operation of the 4I13/2 ↔ 4I15/2 transition it

s important to keep the Er3+ concentration low (1 at.% or less) in
rder to minimize re-absorption losses at the laser wavelength and
o reduce upconversion losses that depopulate the pump and upper
aser levels [1–10].

Compared to oxide and fluoride laser hosts, Er-doped crys-
als with small maximum phonon energies provide the advantage
f reduced non-radiative relaxation rates leading to high emis-
ion quantum efficiencies. Ternary lead halides such as KPb2Cl5
nd KPb2Br5 were recently identified as a novel class of low-
honon energy laser hosts [18–26]. Efficient emission at near
nd mid-IR wavelengths have been reported from several rare
arth-doped KPb2Cl5 and KPb2Br5 crystals [18–24]. Moreover, sev-
ral laser demonstrations from rare earth-doped KPb2Cl5 crystals
ave been reported including Er:KPb2Cl5 (Er:KPC) at 1.7 �m and

.5 �m [22]. Recently, it was also shown that energy-transfer
pconversion processes in Er:KPC are orders of magnitude lower
ompared to common oxide and fluoride laser hosts, which fur-
her reduces heat loading in resonantly pumped 1.5 �m Er3+ lasers
23].

http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
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In this paper we report spectroscopic results of the 1.5 �m
bsorption and emission properties in polycrystalline Er:YAG and
r:KPC. A commercial Er:YAG ceramic was used in these stud-

es, whereas Er:KPC crystals were grown using in-house facilities.
he emission cross-sections were determined for low concentra-
ion samples (∼0.5 at.%) using a combination of the reciprocity and
uchtbauer–Ladenburg (FL) methods.

. Experimental considerations

A sample of a polycrystalline ceramic Er:YAG was purchased from Baikowski
nternational Corporation (Charlotte, North Carolina) with the dimension
mm × 5 mm × 3 mm. The Er concentration as provided by the manufacturer was
.5 at.%. The investigated Er:KPC crystals were grown using in-house crystal growth

acilities as described previously [21,24]. The synthesized KPC material was purified
hrough a combination of directional solidification, zone-refinement, and chlorina-
ion of the melt using research grade HCl gas. The Er:KPC crystals were subsequently
rown using a modified Bridgman growth technique.

Absorption spectra were measured using a Cary 5000 spectrophotometer with a
xed spectral bandwidth of 0.5 nm. The near-IR emission was excited using a mod-
lated (70 Hz) 972 nm diode-laser and dispersed with a 0.5-m spectrometer. The
pectrometer was equipped with a 600 grooves/mm reflecting grating blazed at
�m. The spectral resolution in all emission measurements was ∼0.5 nm. A long
ass filter with a cut-on wavelength of 1100 nm was placed in front of the entrance
lit of the spectrometer to block laser scattering. The emission signal was recorded
sing a thermoelectrically cooled InGaAs detector in conjunction with a lockin
mplifier. All recorded emission spectra were carefully calibrated for the spectral
esponse of the experimental setup. For emission lifetime studies the 965 nm out-
ut of a pulsed (5 ns) Nd:YAG pumped Optical Parameteric Oscillator was employed
s the pumped source. The entire emission from the 4I15/2 → 4I13/2 transition was
onitored using a 1.5 �m bandpass filter placed directly in front of the detector.

he decay transients were averaged and recorded using a digital oscilloscope.

. Optical characterization
.1. Polycrystalline ceramic Er:YAG

The room-temperature absorption spectrum of the
I13/2 → 4I15/2 transition of ceramic Er:YAG is shown in Fig. 1.
he spectral position and stark-splittings of the observed absorp-

ig. 1. Absorption and emission cross-section spectra for the 4I15/2 ↔ 4I13/2 transition
f ceramic Er:YAG at room-temperature.
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ion lines for ceramic Er:YAG closely matched reported data
or single-crystal Er:YAG [1,2,10]. The absorption cross-section

as calculated using an Er concentration of 6.9 × 1019 cm3 as
etermined by inductively coupled plasma optical emission
pectroscopy (ICP-OES). The measured Er concentration agreed
ell with the nominal concentration of 0.5 at.% provided by the
anufacturer.

The absorption cross-section for ceramic Er:YAG at the most
ommon pump wavelengths of 1475 nm and 1532 nm were deter-
ined to be 1.8 × 10−20 cm2 and 2.3 × 10−20 cm2, respectively. At

he common Er:YAG laser wavelengths of 1617 nm and 1645 nm,
he absorption cross-sections determining ground-state absorption
osses were 0.12 × 10−20 cm2 and 0.06 × 10−20 cm2, respectively.
hese numbers are in good agreement with recent spectroscopic
esults reported for single-crystal Er:YAG (0.5 at.%) [9,10]. It was
oticed, however, that the absorption cross-section data reported

n the literature vary slightly for single-crystal Er:YAG depending
n the Er concentration and spectral resolution employed in the
bsorption measurements [1–10].

The emission cross-section (�emis) for ceramic Er:YAG was cal-
ulated using the reciprocity method, which relates absorption and
mission cross-section [1]:

recip
emis (�) = �abs(�)

Zl

Zu
exp

(
EZL − hc/�

kT

)
(1)

here �abs is the absorption cross-section, Zl and Zu are the parti-
ion functions of the lower and upper states, and EZL is the zero-line
nergy. EZL is defined as the energy difference between the lowest
tark component in the upper and lower levels. The partition func-
ion ratio Zl/Zu was calculated from published data on the energy
evel structure of ceramic Er:YAG and yielded a value of 1.055 [17].
he wavelength used for the zero-line (EZL) was 1526 nm [17].
he obtained emission cross-section spectrum is shown in Fig. 1
nd yielded values of 0.67 × 10−20 cm2 and 0.59 × 10−20 cm2 at the
ommon laser wavelengths of 1617 nm and 1645 nm, respectively.
hese cross-sections are similar to reported values for single-crystal
r:YAG [1–10], which further underlines that ceramic Er:YAG has
omparable optical properties to its crystalline counterpart. The
mission cross-section spectrum was also determined from the
ell-known FL equation [20]:

FL
emis(�) = ˇ�5I(�)

8�n2c�rad

∫
�I(�) d�

(2)

here ˇ is the branching ratio, n is the refractive index, c is the speed
f light, I(�) is the intensity of the corrected emission spectrum,
nd �rad is the radiative lifetime of the 4I13/2 multiplet. �rad was
alculated to be 6.2 ms from the condition that the integrated emis-
ion cross-sections derived from the reciprocity and FL methods
hould be equal. The room-temperature lifetime for ceramic Er:YAG
owder was measured to be 5.9 ms (see Fig. 2), which supports
he internal consistency of the emission cross-section calculations.
t was noticed thus, that the measured emission spectrum was
lightly impacted by re-absorption losses at wavelengths lower
han ∼1550 nm, which led to reduced emission cross-sections val-
es compared to those obtained from the reciprocity method. Based
n the cross-section analysis, the emission quantum efficiency of
he investigated ceramic Er:YAG (0.5 at.%.) sample was estimated to
e ∼95%, which compares well with the 92.5% emission efficiency
eported for single-crystal Er:YAG [10].
.2. Er:KPb2Cl5

The 1.5 �m absorption and emission cross-section spectra
4I13/2 → 4I15/2) for Er:KPC are shown in Fig. 3. In contrast to ceramic
r:YAG, the IR spectra for Er:KPC are relatively broad with only a
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ig. 2. Emission decay transients for ceramic Er:YAG and Er:KPC excited at 965 nm.

ew structures indicating Stark-level splittings. A detailed Stark-
evel analysis was recently performed on Er:KPC [25,26] indicating

ground-state splitting of ∼240 cm−1 compared to ∼575 cm−1

eported for ceramic Er:YAG [17]. The reciprocity method was
pplied to determine the emission cross-section spectrum for
r:KPC (Fig. 3). The partition functions were calculated from the
nergy level structure of Er:KPC and the ratio Zl/Zu yielded a
alue of ∼1.1 [19,25]. The wavelength used for the zero-line (EZL)
as 1535.4 nm [25]. The resulting peak emission cross-section at

536 nm was determined to be 1.1 × 10−20 cm2. The cross-sections
t the longer wavelength peaks of 1552 nm and 1582 nm were
educed to values of 0.89 × 10−20 cm2 and 0.29 × 10−20 cm2, respec-

ively. For consistency check, the emission cross-section was also
alculated using the FL-method as shown in Fig. 3 using a radia-
ive lifetime of 4.3 ms. This lifetime is in good agreement with the
adiative lifetime of 4.2 ms derived from a Judd–Ofelt analysis [19].

ig. 3. Absorption and emission cross-section spectra for Er:KPC at room-
emperature.
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ig. 4. Gain cross-section spectra for the 1.5 �m transition in ceramic Er:YAG and
r:KPC for different population inversion ratios (ˇ = 0.25, 0.5, and 0.75).

he experimental lifetime from a low concentration Er:KPC powder
as determined to be 5.7 ms (Fig. 2), which suggests some residual

ffect of radiation trapping [19]. The initial rise-time in the 1.5 �m
ifetime transient can be attributed to radiative feeding from the
I11/2 excited state.

.3. Gain cross-sections for ceramic Er:YAG and Er:KPb2Cl5

Using the obtained absorption and emission cross-sections for
eramic Er:YAG and Er:KPC the gain cross-sections were calculated
ccording to [2]:

(�) = ˇ�emis(�) − (1 − ˇ)�abs(�) (3)

here ˇ = Nexc/Ntot is the inversion ratio with Nexc and Ntot being
he Er3+ excited state and total Er3+ populations, respectively. Exam-
les of the gain cross-section spectra for ˇ = 0.25, 0.5, and 0.75 are
hown in Fig. 4. The peak gain cross-section in Er:KPC for ˇ = 0.75
s only half the value determined for ceramic Er:YAG, which would
ead to a significantly higher laser threshold. Furthermore, it can
e noticed that higher population inversion ratios are required for
r:KPC than for ceramic Er:YAG to achieve a positive gain cross-
ection at longer wavelengths. For example, for ceramic Er:YAG
lready 25% population inversion leads to a gain cross-section of
0.1 × 10−20 cm2 at the common laser wavelength of 1647 nm.
n the contrary, nearly 50% population inversion is needed for
r:KPC to achieve a positive gain of ∼0.1 × 10−20 cm2 at the long-
avelength peak at 1582 nm. This can be explained by the larger

tark-level splittings in ceramic Er:YAG compared to Er:KPC, which
eads to reduced re-absorption losses at longer wavelengths. How-
ver, the significant spectral overlap between the 4I13/2 → 4I15/2
mission and 4I13/2 → 4I9/2 excited state absorption in Er:YAG leads
o a larger energy-transfer upconversion coefficient and higher heat
oading compared to Er:KPC [23].

. Conclusions

Spectroscopic results of the 1.5 �m (4I15/2 ↔ 4I13/2) absorp-
ion and emission properties of ceramic Er:YAG and Er:KPC were
resented. It was observed that the spectral properties and cross-
ections of ceramic Er:YAG are very similar to results reported
or single crystals of Er:YAG. Therefore, it can be predicted that

.5–1.6 �m lasers using ceramic Er:YAG will have comparable laser
roperties to their crystalline counterparts, with the added advan-
ages intrinsic to ceramic gain media. Compared to ceramic Er:YAG,
r:KPC has significantly broader spectral features providing the
ossibility for modest wavelength tunability in the 1.5 �m region.
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he smaller ground-state splitting for Er:KPC compared to Er:YAG,
owever, leads to significant ground-state re-absorption due to
igher thermal populations in the Stark levels of the 4I15/2 multi-
let. In addition, further improvement in the material purification
nd crystal growth are necessary to produce laser quality Er:KPC
rystals for the 1.5 �m spectral region.
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